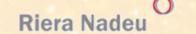
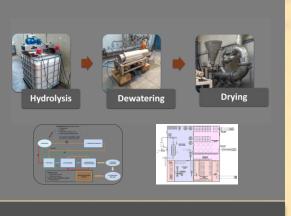
from brewery to fish feed

NEW TECHNOLOGIES FOR VALORISING BREWERS' BY-PRODUCTS AS SECONDARY MATERIALS FOR NEW HIGH VALUE APPROACHES

David San Martín dsanmartin@azti.es



from brewery to fish feed



Index

1. Objectives & Challenges

High value solution for brewers' by-products

2. Technological solution

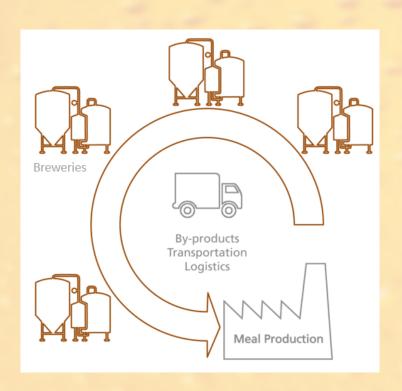
Best available techniques; Recovery scheme & Eco-designed **Production plant**

3. Market value

Production & Food and Feed alternatives

Sustainability of beer industry

Socios



from brewery to fish feed

1. Objectives

General objective:

To define and demonstrate the feasibility of an innovative and sustainable Technological solution to valorise brewers' by-products as secondary materials for new high –value approaches:

- At semi-industrial scale and in a real operational conditions
- In a real case study representative of a EU brewing producing region → Spain

from brewery to fish feed

1. Challenges

Enzymatic Hydrolysis of protein

• To assess the potential of **hydrolysis** to obtain other high value compounds (nutraceutical; food; feed; etc.) and/or to increase the ingredients digestibility (aquafeed) to give more value to brewers' by-products.

Stabilization by drying

- To develop an innovative and efficient drying process which ensures:
 - 1) nutritional quality 2) food security & safety 3) economic feasibility for obtaining:
 - Dried spent yeast
- 2. Hydrolysed and dried spent yeast
- 3. Dried spent grain
- 4. Hydrolysed and dried spent grain

from brewery to fish feed

2. Technological solution

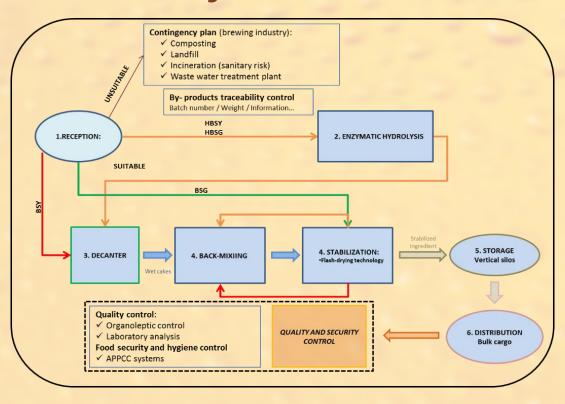
> Best available techniques

Enzymatic hydrolysisHigh-value molecules
Digestibility

Decanter & CentrifugeMore efficient and less energy demanding

Drying

Flash drying
High-efficient but more
energy demanding



from brewery to fish feed

2. Technological solution

> Recovery scheme

All the stages of the Value chain

Innovative, safe and secure

- ➤ Food grade -human consumption- and/or other approaches
- > Nutritional value maintaining

Replicable to any European region

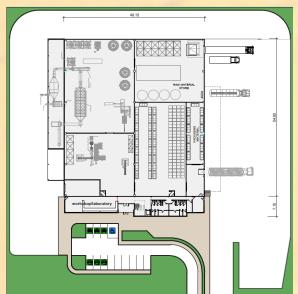
> Flexible and adaptable to any scenario

Sustainable

> Eco-designed at industrial level

High-Efficient

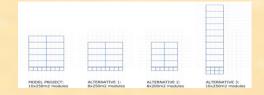
- **≻Low energy demanding**
- Adaptable to any energy source: surplus, renewable



from brewery to fish feed

2. Technological solution

> Production plant



→ Eco-design methodology applied (ISO 14006)

- ➤ Location analysis → Thermal envelope to reduce Heat loss / excessive gains
- ➤ Bioclimatic design → Solar gains and Protection to reduce Energy demands
- >Environmental certification criteria (BREEAM, LEED and WELL)
- ➤ Material / structural selection based on LCA → Cradle to grave, EPDs
- ➤ Responsible sourcing → ISO 14001
- ➤ EU legislation → Energy Performance Building Directives (EPBD, NZEB), National Energy Efficiency Action & Energy and Climate Plans (NEEAP & NECP)
- **Energy performance simulations** → *Renewable energy* analysis

Energy design concept:

Reduce demand (passive measures)

Reduce consumption (EE active measures)

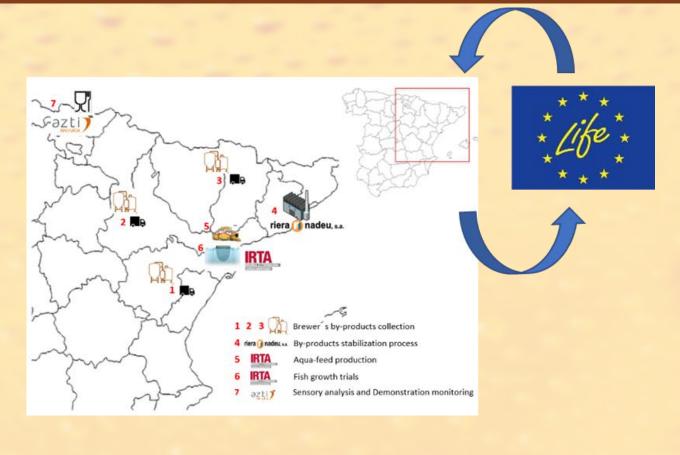
Reduce fossil fuel consumption (renewables)

→ Turnkey solution is available

from brewery to fish feed

3. Market value of final products

Scope of demonstration trial:


- In a representative case study
- At a semi-industrial scale
- A **real operation** conditions

15 tons of BSG and BSY

1.5 tons of BSG and BSY ingredients

- 1. Dried spent yeast
- 2. Hydrolysed and dried spent yeast
- 3. Dried spent grain
- 4. Hydrolysed and dried spent grain

from brewery to fish feed

3. Market value of final products

1.- New food ingredients:

➤ Nutritional value → High protein content; Antimicrobial capacity (E.Coli / Salmonella spp. / Staphylococus spp.); Anti-oxidant capacity; Anti-hypertensive capacity; Glucans

		Yeast	H-Yeast	Grain	H-Grain
BASIC PARAMETERS	Unit	Ofice	Ofice	Ofice	Ofice
Moisture	%	5,81	4,54	6,02	5,23
Ash	%	5,65	5,26	4,33	4,70
Crude Protein	%	37,98	38,51	25,90	22,20
Crude fat	%	2,06	1,87	8,06	6,74
Gross Energy	KJ/100g	1546,00	1571,00	1685,00	1666,00
Phosphorus	%	1,12	1,08	0,50	0,38
Crude fiber	%	1,18	1,35	15,96	17,58
Starch	%	21,87	27,07	2,56	1,80

- → High EU protein market potential
- → High Ingredient value

➤ Security & Safety → Food grade

lifebrewery from brewery to fish feed

3. Market value of final products

2.- Aquafeed ingredients:

Tested with Gilthead seabream (Sparus aurata) and Rainbow trout (Oncorhynchus mykiss):

- ➤ Adequate Digestibility for fishes → Digestibility tests have been positive.
 - → High *level of inclusion in diets*: 20 % in BSY and 15 % in BSG
- ➤ High nutritional value → Growth and Feed efficiency trials have been positive.
 - → No differences with control
- ➤ Tasty fishes → Sensory tests have been positive.
 - → No differences with control
- → EU market potential: 3,510,000 tonnes / year
- → High Ingredient value

Coordinator

from brewery to fish feed

4. Benefits

HIGH VALUE SOLUTIONS FOR BREWERS BY PRODUCTS

→ Contributing to the Sustainability of beer industry.

1- FOOD INGREDIENTS

High-value solution for brewers' by-products.

2- AQUAFEED INGREDIENTS

Value solution for large quantities of by-product.

COMPETITIVENESS

→ Implementing a new business activity based on Circular economy.

SUSTAINABILITY

→ Sustainable products have an added value that gives them an advantage over the competition.

ENVIRONMENTALLY FRIENDLY

- \rightarrow Minimizing CO_2 emissions by:
 - Valorising brewers' by-products as Secondary raw material
 - 2. Eco-design of the processing plant.

from brewery to fish feed

4. Sustainability

ENVIRONMENTAL IMPACT KPIs

1. Brewery sector

Brewery by-products landfilling or treatment

- ↓ 513 kg CO2 eq. / tonne of BSG disposed in a landfill [Eco invent database]
- ↓ 83 kg CO2 eq. / tonne of BSY treated in a treatment plant [Eco invent database]

2. Aquaculture sector

Alternative ingredient in aquafeed:

- 15 % substitution of current raw materials by brewers' by-products in aquafeed:
 → ↓ 128 kg CO2 eq. / tonne of Aquafeed [Eco invent database]
- Fishing activity to produce fish meal → 2,140 kwh (Energy) / tonne of fish meal [as far as this meal comes from Technosphere resources (supply chain products)]



from brewery to fish feed

4. Sustainability

ENVIRONMENTAL IMPACT KPIs

3. Comparison of Valorising brewer's by-product as aquaculture feed with: Incineration or landfilling:

 \downarrow up to 300 kg of CO₂ eq. per ton of by-product.

Wet livestock feed:

 \downarrow up to 140 kg of CO₂ eq. per ton of by product, due to the avoided impact of the replacement of soybean and fishmeal.

lifebrewery from brewery to fish feed

Conclusion about Proposed Technological solution

Innovative, safe and secure

- All the stages of the Value chain → Feasibility of solution has been demonstrated at semi-industrial scale
- Suitable for Food grade or other approaches -> Combination of both options is possible
- Nutritional value; Safe and Secure → The nutritional value of brewers' by-products is protected

Replicable to any European region

Flexible and adaptable to any scenario

 Different solutions for different scenarios

Sustainable solution

Eco-designed at industrial level → Environmental aspects have been considered

High-Efficient solution

- Low energy demanding -> Sustainability and Profitability ensured
- Adaptable to any energy source: surplus, renewable -> Versatility

Turnkey solution is available

Design adapted to any requirement → Adaptable to any business dimension

Acknowledgments

1. Life BREWERY project (LIFE16ENV/ES/000160) is funded by **LIFE European Environment Programme** (https://ec.europa.eu/easme/en/life), which is the EU's financial instrument supporting environmental, nature conservation and climate action projects throughout the EU.

2. Brewers by-products samples used in this study were provided by **Mahou San—Miguel company** in Spain (<u>www.mahou-sanmiguel.com</u>).

3. All the enzymes used for the hydrolysis were provided by Ramiro Martínez, **Novozymes** Spain (www.novozymes.com).

from brewery to fish feed

Thank you - Any question?

More information:

David San Martin - dsanmartin@azti.es

& TECHNOLOGY ALLIANCE

lifebrewery.azti.es

@life_brewery

